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ASYMPTOTIC BEHAVIOR OF THE BELLMAN FUNCTION 
IN A STOCHASTIC OPTIMAL CONTROL PROBLEMS* 

A.I. OVSEEVICH 

A quasi-optimal. control giving a near-optimal result under small power resources is 
found by studying the asymptotic behavior of the Bellman function of the optimal 
control problem for the motion of a system perturbed by white noise with limited 
control power resources, The determination of the asymptotic behaviorofthe Bellman 
function and of the quasi-optimal control calls for solving the partial differential 
equations introduced in /l/. A converging iteration process is found for solving 
them. 

1, Statement of the problem, Let the motion of a point in an n-dimensional space 
R" be described by the stochastic differential equation 

C&T, I:: u&t + dwi, I, L= x (1.1) 

where mt is the s-dimensional Brownian motion. It is assumed that control ut depends upon 
the trajectory sz up to the instant t and is such that (\ut 1 is the EucLidean norm of vector 
ai1 

5 / ut pat < p (1.2) 

In addition, let F(r) be some fixed function. It is required to minimize the mean ~~,s(F(~~)) 
of the random quantity P&T) under the condition z, =zx. Such a setting can be treated as 
a model optimal. motion control problem with limited control power, while the quantity Q can 
be interpreted as the initial reserve of the power resources. 

This and similar problems were analyzed in /1,2/. Below we study the asymptoticbehavior 
of the Bellman function S(.r, t, Q) = ~nf~~~~(~(~~~) as Q+ 0. To be precise, we introduce the 
asymptotic representation 

8 (s, t, Q) =z So (5, t) + QS, (+, t) + Q (Q") 

and the partial differential equations satisfied by functions Se and S,, as well as a con- 
verging iteration process for solving these equations. The equations have the following form: 

% -I--$A&=& S,(z,T)=F(z) (L-3) 

2+ -$-A& + fnin((~., grad&)-y&)=0, &(r, T)=O (1.4) 

where A and s?ad are, respectively, the Laplacian and the gradient in R" i in what follows 
these equations are called the sero- and first-approximation equations, respectively. Further, 
with respect to S,, and S, we construct a quasi-optimal control u such that 

S -- E" (F (sr)) + 0 (92) 

The main idea of the paper is that the function & + Q+S',, just as S, is the Bellman func- 
tion of some stochastic extremal problem , and the sets of admissible controls in both problems 
coincide, while the functionals differ by a quantity of the order of Q”. Henceforth, for 
simplicity of notation we take it that n -1, i.e., .z<, ul, II?~ are scalars. 

2. Refinement of the problem statement, The set U(o) of admissible controlswith 
resource Q consists of functionals 14~ -= u(t, ~~~1) which measurably depend on the trajectory 
x7, r--( t of the random process st (thus, Tut is a nonanticipative functional in the terminol- 

ogy of /3/l and for which 
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with probability one. Concerning the risk function F(z) we assume that it is infinitely 
smooth with exponentially bounded derivatives, i.e., any derivative is estimated from above 
by (COnSt) exp (hIsI), where h = const. We write this assumption as FEC” (exp). We define the 
functionals 

The Brownian motion Wt in the definition of K(u) is assumed to issue from .z at instant s, 
while the control at --. u(t, wVGJ) is computed along the trajectory w,. 

Theorem 1. II (u) - K (u) If CQ" for UE U(Q) and sufficiently small Q, where c 7 
c (2, s) is a function Of exponential growth (i.e., C (z,s)< (const)exp(hls[) for s lying in 
a bounded interval). 

Proof. The idea is to apply the Cameron-Martin formula (see /3-5/l 

T 
I (u)= E (F (wT)exp X), X = 

I 
' L(~ du+--f 
I 5 

zr,"dt (2.1) 

to expand the exponential into a series and to retain in it only terms of first order in Q, 
which constitute the functional K(u). Formula (2.1) is true for us U(Q) since by virtue 
of Theorems 6.1 and 4.13 of /4/ it suffices that 

but this follows from (1.2). 
Thus, a part of the program projected at the end of section 1 has been realized. It 

remains to solve the problem on the minimum for the simplifies functional fl (a). We begin by 
reducing K(u) to a more convenient form. 

3, Transformation of functional K(u). iie define function 8, by the formula 

&(% 8) = G,, (F (WT)), where the Erownian motion w2 starts from x at instant s. Then, as is 
well known (see /5/, for example), ,$, is a smooth solution of the zero-approximation Eq.cl.3). 
We set cp = as,lax. Using the It8 formula (see /3/) as applied to S,(u.$,t), with due regard 
to (1.3) we can show that 

EjFiwr)~utdwt)=Ei~(lol,t)u,dt (3.1) 
s ; 

We denote the right-hand side of (3.1) by r(u). Then 

K (u) = so (2, s) +- J (u) 

For the complete realization of the program marked at the end of section 1 it remains to show 
that the minimum of J(U) with respect to UE U (Q) exists and that min J (a)= QS,(;E,S), 
where $1 satisfies the first-approximation Eq.cl.4). 

4, Regularization of the extremal problem, We complement the random process 21 = 
wt by the component 

(see /1,6,7/j and we obtain the system 

d;zl = am,, I, = x, dQt = -(u~~/(ZQ*)) & Qs = Q 

We denote inf J (u) over u E U(Q) by S, (r, s, Q). Then it is natural to expect that 8, satis- 

fies the Bellman equation 

(4.1) 
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S, = 0 when Q = 0 or when t = T. Setting S+(J.S, Q) = QS, (s,S), for $1 we obtain the first- 
approximation equation 

(4.2) 

We note that min (ucp - (~4~12) sl) = qp2/(2S,) when S, < 0. Together with the boundary condition 
S1(z, T)= 0 this shows that Eq.(4.2) is singular when t = T. Therefore, we begin with the 
solution of the regularized problem 

(4.31 

which is connected with the minimization of the functional J,(s) = J(U)- EE (QT). The solu- 
tion of the regularized problem (4.3) is obtained by using the standard Bellman interation 
process. 

5. The Bellman method. We set @@= -eE, ug =O. If _mG has been defined, then we 
set %fl =tp/@* (since vu=+1 - (z&/2) d?, = min(m,u - (~2/Z) @*)f and we determine a,,,, as 
the solution of the Cauchy problem 

(5.1) 

We note that the function cp = X?,/ax and AS,, = E'(F (WT)) are infinitely smooth with exponen- 
tially bounded derivatives because F has these properties (in the notation of Sect.2, cp= 
C" (exp)). The following lemma ensures the possibility of an unrestricted continuation of the 
iterations. 

Lemma 1. Let u,rl)E Ca (exp),$ < 0. Then the Cauchy problem 

a4 
--t-f= + $-+=O, ‘D(L, T)=--e at 

has the unique solution @E Cat fexp), while @< -I%. 

Lemma 2. The sequence QB decreases monotonically and converges to the function X,E 
Cm (exp) i.e., to the unique solution of the problem: 

a=, 
at ++z +++o, Z,(X,T)=-~ (5.2) 

Proof, We set M'= G+,_ - D,. Then 

The inequality follows from the fact that 

because of the special choice of u,,+~. Therefore, the maximum principle yields iv<O, as re- 
quired. To provetheconvergence of U&, it is sufficient to establish the lower bound for 4n. 
We now set &+(r, t,Q) = Q&&t) and show that &+ possesses a certain "quasi-optimal prop- 
erty". 

LeMma 3. 1) &‘@,S, Q) = min J,(U), where functional J,(u) = J(u) - EE (QT) has been 
defined in Sect.4 and the minimum is taken over UE U(Q). 

2) The minims in 1) is achieved by the control 

ute = (cp.'&) (wt, 0 Qt" 

6. Solution of the first-approximation equation. The next theorem completes 
the program marked as the end of Sect.1. 
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Theorem 2. 11 Functions rr increase monotonically as eJ 0 and the limit function 
S,=lim 2, is a generalized solution of the Cauchy problem: 

2) Let S, (x, t, Qf = QSl(s, 1). Then S, (.rT 1, Q) = min J (u), where functional x(z6) was de- 
fined in Sect.3 and the minimum is taken over u E u(Q). 

3) the minimum in 2) is achieved by the control 

l~f = QAdS,) (wt> 0 

Proof. 1) Let c,< P?. V, =. Xl,! Vi, -1 Es.. w = v, - v?. Then 

Hence by the maximum principle we obtain tv> 0, as required. To prove 1) it is necessary to 
establish certain a priori estimates for & , uniform with respect to E. Let peC", 
(b (z) : - (con&) 1 x ) for ) .T [ > 1. Then, multiplying (5.2) by &e-@> integrating by parts and 

applying Gronwall's lemma, we obtain 

(6.2) 

where c is independent of E (the summand 1 in the right-hand side of (6.2) arises because 
z, (I, T)#= 0). Multiplying (5.2) by e-p, integrating by parts and using (6.2), we obtain 

where again c is independent on E . Estimates (6.2) and (6.3) permit a passage to the limit 
asp-+0 in the equality 

where f is a smooth finite function, and to get that 8, = lim&. is a generalized solution of 
Eq.(6.1). Assertion 1) has been proved. The theorem's assertion 2) follows at once fl?Oill 

Lemma 3. The proof of assertion 3) reduces to justifying the possibility of passing to the 
limit as ~4-0 in the equality 2,' -= J,(u') from Lemma 3. We recall that 

We need to show that uIp converges to u(Wt,t, 43 ass- 0 andthatthe functions $13 (w~t,t)uE are 
uniformly integrable with respect to the product of the Lebesgue measure of interval !s,r'l by 
the Wiener measure. To prove the uniform integrability it is enough to estimate 

from above uniformly with respect to 8. This expression can be estimated through 

E ((SUP 1 cp (WA I”) j: (Wa dt) ‘.: VE (sup 1 cp (wr, t) 1% s < t .c< T 
n 

since u' V~ U(Q). Further, v has an exponential growth and, therefore, it remains to note that 
for any h 

E (sup exp (h / mt I))< 00, s < t c.> 1 

7. Example. We consider the controlled motion of a rigid body undergoing random pertur- 
bations around a fixed point 0. The equation of motion is 

dnl* (1.111, wt] -:m u,)di -1 dicl, 31, 2 

where .il- .Iu is the kinetic moment vector relative to 0 in the body, o is the angular veloc- 
ity vector in the body, J istheinertia tensor, u is the control, Y, is the three-dimensional 
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Brownian motion. We are required to minimize the mathematical expectation Ey.(I.11,12) of the 

square of the moment's absolute value at a fixed instant T under-constraint o'i form (1.2) on 

the control. By the It6 lemma it follows that the scalar T,- IM~( satisfies the equation 

where 5, is a 

.Ti satisfies 

(7.1) 

scalar Wiener process. By this same Ittj lemma we get that if the vector process 

the equation 

dr, 0, dl -t dul, .r_ .I 

then the process IJll satisfies an equation analogous to (7.1) and the optimization problems 

for E,U,, (1 'M, I ?) and E~,,(j.~r 12) under constraint (1.2) are equivalent. Therefore, fromTheorem 

2 we obtain the control quasi-optimal under small values of resource Q, given in the form of 

the synthesis 

where S,(r,r) is a nonpositive solution of the equation 

Function S, can be written in selfsimilar variables as Al(t.‘.) ?f (5), where 5 -~ r (T - I)-'., while 

f(5) satisfies the equation 

1'i f” (5) 5’ -I- f’ (5) (‘/ny -! 3:) -{- 3f (5) _1- Ztf (5) -= 0 

Methods for the numerical solution of such equations are given in /6/. 
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The author thanks F.L. Chernous'ko for posing the problem. 
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